منابع مشابه
Two modes of microtubule sliding driven by cytoplasmic dynein.
Dynein is a huge multisubunit microtubule (MT)-based motor, whose motor domain resides in the heavy chain. The heavy chain comprises a ring of six AAA (ATPases associated with diverse cellular activities) modules with two slender protruding domains, the tail and stalk. It has been proposed that during the ATP hydrolysis cycle, this tail domain swings against the AAA ring as a lever arm to gener...
متن کاملMicrotubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein.
Bone marrow megakaryocytes produce platelets by extending long cytoplasmic protrusions, designated proplatelets, into sinusoidal blood vessels. Although microtubules are known to regulate platelet production, the underlying mechanism of proplatelet elongation has yet to be resolved. Here we report that proplatelet formation is a process that can be divided into repetitive phases (extension, pau...
متن کاملATP-dependent regulation of cytoplasmic microtubule disassembly.
Indirect immunofluorescent staining with an antitubulin antibody was used for studying the role of ATP in the regulation of cytoplasmic microtubule disassembly. Depletion of the cellular ATP pool in cultured mouse fibroblasts with various inhibitors of energy metabolism leads to inhibition of the microtubule disassembly induced by colcemid or vinblastine. Glucose added to the inhibitor-containi...
متن کاملProperties of microtubule sliding disintegration in isolated tetrahymena cilia
Properties of the sliding disintegration response of demembranated tetrahymena cilia have been studied by measuring the spectrophotomeric response or turbidity of cilia suspensions at a wavelength of 350 nm relative to changes in the dynein substrate (MgATP(2-)) concentration. The maximum decrease in turbidity occurs in 20 muM ATP, and 90 percent of the decrease occurs in approximately 5.9 s. A...
متن کاملThe velocity of microtubule sliding: its stability and load dependency.
It is now well understood that ATP-driven active sliding between the doublet microtubules in the sperm axoneme generates flagellar movement. However, much remains to be learned about how this movement is controlled. Detailed analyses of the flagellar beating of the mammalian spermatozoa revealed that there were two beating modes at a constant rate of microtubule sliding: that is, a nearly const...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communicative & Integrative Biology
سال: 2010
ISSN: 1942-0889
DOI: 10.4161/cib.3.6.13212